Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Cell Mol Med ; 26(3): 636-653, 2022 02.
Article in English | MEDLINE | ID: covidwho-1583513

ABSTRACT

Since COVID-19 took a strong hold around the globe causing considerable morbidity and mortality, a lot of effort was dedicated to manufacturing effective vaccines against SARS-CoV-2. Many questions have since been raised surrounding the safety of the vaccines, and a lot of media attention to certain side effects. This caused a state of vaccine hesitancy that may prove problematic in the global effort to control the virus. This review was undertaken with the aim of putting together all the reported cardiovascular and haematological events post COVID-19 vaccination in published literature and to suggest possible mechanisms to explain these rare phenomena.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/immunology , Cardiovascular System/drug effects , Vaccination/adverse effects , Humans , SARS-CoV-2/immunology
2.
Int J Mol Sci ; 22(18)2021 Sep 21.
Article in English | MEDLINE | ID: covidwho-1430893

ABSTRACT

Cardiovascular diseases are the leading causes of death worldwide. The cardioprotective effects of natural polyphenols such as resveratrol (3,5,4-trihydroxystilbene) have been extensively investigated throughout recent decades. Many studies of RES have focused on its favorable effects on pathological conditions related to cardiovascular diseases and their risk factors. The aim of this review was to summarize the wide beneficial effects of resveratrol on the cardiovascular system, including signal transduction pathways of cell longevity, energy metabolism of cardiomyocytes or cardiac remodeling, and its anti-inflammatory and antioxidant properties. In addition, this paper discusses the significant preclinical and human clinical trials of recent years with resveratrol on cardiovascular system. Finally, we present a short overview of antiviral and anti-inflammatory properties and possible future perspectives on RES against COVID-19 in cardiovascular diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , COVID-19 Drug Treatment , Cardiovascular Diseases/drug therapy , Cardiovascular System/drug effects , Resveratrol/pharmacology , Animals , COVID-19/pathology , Cardiovascular System/pathology , Humans
3.
J Fam Pract ; 70(6S): S1-S6, 2021 07.
Article in English | MEDLINE | ID: covidwho-1372160

ABSTRACT

LEARNING OBJECTIVES: At the end of the activity, participants will be able to: • Identify how heart failure (HF), chronic kidney disease (CKD), and type 2 diabetes mellitus (T2DM) and associated cardiovascular (CV) risks are interconnected. • Initiate guideline-recommended therapy to reduce CV risk in patients with HF, CKD, and/or T2DM. • Apply evidence for sodium-glucose cotransporter-2 inhibitors (SGLT-2 inhibitors) to clinical practice, based on recent and emerging trials. • Review evidence suggesting increased incidence and severity of COVID-19 infection in patients with diabetes.


Subject(s)
Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Cardiovascular System/drug effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/prevention & control , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/prevention & control , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Humans , Hypoglycemic Agents/therapeutic use , Treatment Outcome
4.
Rev Cardiovasc Med ; 22(2): 343-351, 2021 06 30.
Article in English | MEDLINE | ID: covidwho-1310350

ABSTRACT

Coronavirus disease 2019 (COVID-19), a mystified cryptic virus has challenged the mankind that has brought life to a standstill. Catastrophic loss of life, perplexed healthcare system and the downfall of global economy are some of the outcomes of this pandemic. Humans are raging a war with an unknown enemy. Infections, irrespective of age and gender, and more so in comorbidities are escalating at an alarming rate. Cardiovascular diseases, are the leading cause of death globally with an estimate of 31% of deaths worldwide out of which nearly 85% are due to heart attacks and stroke. Theoretically and practically, researchers have observed that persons with pre-existing cardiovascular conditions are comparatively more vulnerable to the COVID-19 infection. Moreover, they have studied the data between less severe and more severe cases, survivors and non survivors, intensive care unit (ICU) patients and non ICU patients, to analyse the relationship and the influence of COVID-19 on cardiovascular health of an individual, further the risk of susceptibility to submit to the virus. This review aims to provide a comprehensive particular on the possible effects, either direct or indirect, of COVID-19 on the cardiovascular heath of an individual.


Subject(s)
COVID-19/virology , Cardiovascular Diseases/virology , Cardiovascular System/virology , SARS-CoV-2/pathogenicity , Antiviral Agents/therapeutic use , COVID-19/mortality , COVID-19/physiopathology , COVID-19/therapy , Cardiovascular Agents/therapeutic use , Cardiovascular Diseases/mortality , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/therapy , Cardiovascular System/drug effects , Cardiovascular System/physiopathology , Comorbidity , Host-Pathogen Interactions , Humans , Prognosis , Risk Assessment , Risk Factors , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
5.
J Biochem Mol Toxicol ; 35(7): e22795, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1222632

ABSTRACT

The world is currently facing an unprecedented pandemic caused by a newly recognized and highly pathogenic coronavirus disease 2019 (COVID-19; induced by SARS-CoV-2 virus), which is a severe and ongoing threat to global public health. Since COVID-19 was officially declared a pandemic by the World Health Organization in March 2020, several drug regimens have rapidly undergone clinical trials for the management of COVID-19. However, one of the major issues is drug-induced organ injury, which is a prominent clinical challenge. Unfortunately, most drugs used against COVID-19 are associated with adverse effects in different organs, such as the kidney, heart, and liver. These side effects are dangerous and, in some cases, they can be lethal. More importantly, organ injury is also a clinical manifestation of COVID-19 infection. These adverse reactions are increasingly recognized as outcomes of COVID-19 infection. Therefore, the differential diagnosis of drug-induced adverse effects from COVID-19-induced organ injury is a clinical complication. This review highlights the importance of drug-induced organ injury, its known mechanisms, and the potential therapeutic strategies in COVID-19 pharmacotherapy. We review the potential strategies for the differential diagnosis of drug-induced organ injury. This information can facilitate the development of therapeutic strategies, not only against COVID-19 but also for future outbreaks of other emerging infectious diseases.


Subject(s)
Antiviral Agents/adverse effects , COVID-19 Drug Treatment , Biomarkers/analysis , COVID-19/metabolism , Cardiovascular System/drug effects , Cardiovascular System/injuries , Diagnosis, Differential , Humans , Inflammation , Kidney/drug effects , Kidney/injuries , Liver/drug effects , Liver/injuries , Oxidative Stress
6.
Molecules ; 25(22)2020 Nov 11.
Article in English | MEDLINE | ID: covidwho-917015

ABSTRACT

Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.


Subject(s)
Flavonoids/chemistry , Flavonoids/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cardiovascular System/drug effects , Flavonoids/economics , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Mice , Nervous System/drug effects , Neurons/drug effects , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plants/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology , Quercetin/chemistry , Quercetin/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Stroke/drug therapy , Stroke/prevention & control
7.
Drug Discov Today ; 26(3): 631-636, 2021 03.
Article in English | MEDLINE | ID: covidwho-1002477

ABSTRACT

The Coronavirus 2019 (COVID-19) pandemic represents the greatest worldwide public health crisis of recent times. The lack of proven effective therapies means that COVID-19 rages relatively unchecked. Current anti-COVID-19 pharmacotherapies are drugs originally designed for other diseases, and administered orally or intravascularly. Thus, they can have various adverse effects. A specific anti-Coronavirus drug should not only target the virus per se, but also treat the related respiratory and cardiovascular symptoms. Here, we examine the advantages and disadvantages of current anti-COVID-19 pharmacotherapies, and analyze the reasons why in the era of big data we have not yet established specific coronavirus therapies and related technical bottlenecks. Finally, we present our design of a novel nebulized S-nitrosocaptopril that is under development for targeting both coronaviruses and their related symptoms.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Captopril/analogs & derivatives , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Antiviral Agents/classification , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/physiopathology , COVID-19/virology , Captopril/pharmacology , Cardiovascular System/drug effects , Cardiovascular System/metabolism , Drug Development/methods , Drug Repositioning/methods , Humans , Nebulizers and Vaporizers , Pharmaceutical Preparations , Respiratory System/diagnostic imaging , Respiratory System/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Treatment Outcome
8.
Clin Transl Sci ; 14(1): 106-112, 2021 01.
Article in English | MEDLINE | ID: covidwho-780812

ABSTRACT

Increased use of azithromycin (AZ) in treating infections associated with coronavirus disease 2019 (COVID-19) and reports of increased incidence of prolonged corrected QT (QTc) interval associated with AZ used with hydroxychloroquine prompted us to review the latest evidence in the literature, present additional analyses of human cardiovascular (CV) electrophysiology studies, and to describe sequential steps in research and development that were undertaken to characterize the benefit-risk profile of AZ. Combined QTc findings from electrocardiograms taken during oral and i.v. pharmacokinetic-pharmacodynamic studies of AZ suggest that clinically meaningful QTc prolongation is unlikely. Findings from several observational studies were heterogeneous and not as consistent as results from at least two large randomized controlled trials (RCTs). The QTc findings presented and observational data from studies with large numbers of events are not consistent with either a proarrhythmic action of AZ or an increase in frequency of CV deaths. Well-powered RCTs do not suggest a presence of increased risk of CV or sudden cardiac death after short-term or protracted periods of AZ usage, even in patients at higher risk from pre-existing coronary disease.


Subject(s)
Azithromycin/adverse effects , COVID-19 Drug Treatment , Cardiovascular System/drug effects , SARS-CoV-2 , Electrophysiologic Techniques, Cardiac , Endpoint Determination , Humans , Observational Studies as Topic , Randomized Controlled Trials as Topic
9.
Clin Chim Acta ; 510: 311-316, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-654190

ABSTRACT

The coronavirus disease COVID-19 is a public health emergency caused by a novel coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). SARS-CoV-2 infection uses the angiotensin-converting enzyme 2 (ACE2) receptor, and typically spreads through the respiratory tract. Invading viruses can elicit an exaggerated host immune response, frequently leading to a cytokine storm that may be fueling some COVID-19 death. This response contributes to multi-organ dysfunction. Accumulating data points to an increased cardiovascular disease morbidity, and mortality in COVID-19 patients. This brief review explores potential available evidence regarding the association between COVID-19, and cardiovascular complications.


Subject(s)
Betacoronavirus/physiology , Cardiovascular System/virology , Angiotensin-Converting Enzyme 2 , COVID-19 , Cardiovascular System/drug effects , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Coronavirus Infections/metabolism , Humans , Molecular Targeted Therapy , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Pneumonia, Viral/metabolism , Renin-Angiotensin System/drug effects , SARS-CoV-2
10.
Turk Kardiyol Dern Ars ; 48(4): 410-424, 2020 06.
Article in English | MEDLINE | ID: covidwho-622990

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the effectiveness of plants used in the formulations of traditional Chinese medicine (TCM), which were also used in clinical trials to treat patients with the novel coronavirus COVID-19, and to assess their effects on the cardiovascular system. METHODS: A literature review of PubMed, ResearchGate, ScienceDirect, the Cochrane Library, and TCM monographs was conducted and the effects of the plants on the cardiovascular system and the mechanisms of action in COVID-19 treatment were evaluated. RESULTS: The mechanism of action, cardiovascular effects, and possible toxicity of 10 plants frequently found in TCM formulations that were used in the clinical treatment of COVID-19 were examined. CONCLUSION: TCM formulations that had been originally developed for earlier viral diseases have been used in COVID-19 treatment. Despite the effectiveness seen in laboratory and animal studies with the most commonly used plants in these formulations, the clinical studies are currently insufficient according to standard operating procedures. More clinical studies are needed to understand the safe clinical use of traditional plants.


Subject(s)
Cardiovascular System/drug effects , Coronavirus Infections/therapy , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Pneumonia, Viral/therapy , Animals , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Anti-Arrhythmia Agents/toxicity , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/toxicity , Anticholesteremic Agents/pharmacology , Anticholesteremic Agents/therapeutic use , Anticholesteremic Agents/toxicity , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Antihypertensive Agents/toxicity , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/toxicity , COVID-19 , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Calcium Channel Blockers/toxicity , Drug Interactions , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/toxicity , Humans , Pandemics , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/toxicity , Vasodilator Agents/pharmacology , Vasodilator Agents/therapeutic use , Vasodilator Agents/toxicity
11.
Cardiovasc Drugs Ther ; 35(2): 205-214, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-601495

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a pandemic infection caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). COVID-19 significantly affects multiple systems including the cardiovascular system. Most importantly, in addition to the direct injury from the virus per se, the subsequent cytokine storm, an overproduction of immune cells and their activating compounds, causes devastating damage. To date, emerging anti-SARS-CoV-2 treatments are warranted to control epidemics. Several candidate drugs have been screened and are currently under investigation. These primarily include antiviral regimens and immunomodulatory regimens. However, beyond the anti-SARS-CoV-2 effects, these drugs may also have risks to the cardiovascular system, especially altering cardiac conduction. Herein, we review the cardiovascular risks of potential anti-COVID-19 drugs.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19 , Cardiotoxicity/prevention & control , Cardiovascular System/drug effects , Immunologic Factors/pharmacology , SARS-CoV-2/drug effects , COVID-19/immunology , Humans , Risk Assessment
12.
Pharmacol Res ; 159: 104916, 2020 09.
Article in English | MEDLINE | ID: covidwho-324253

ABSTRACT

Inflammation is an obligatory marker of arterial disease, both stemming from the inflammatory activity of cholesterol itself and from well-established molecular mechanisms. Raised progenitor cell recruitment after major events and clonal hematopoiesis related mechanisms have provided an improved understanding of factors regulating inflammatory phenomena. Trials with inflammation antagonists have led to an extensive evaluation of biomarkers such as the high sensitivity C reactive protein (hsCRP), not exerting a causative role, but frequently indicative of the individual cardiovascular (CV) risk. Aim of this review is to provide indication on the anti-inflammatory profile of agents of general use in CV prevention, i.e. affecting lipids, blood pressure, diabetes as well nutraceuticals such as n-3 fatty acids. A crucial issue in the evaluation of the benefit of the anti-inflammatory activity is the frequent discordance between a beneficial activity on a major risk factor and associated changes of hsCRP, as in the case of statins vs PCSK9 antagonists. In hypertension, angiotensin converting enzyme inhibitors exert an optimal anti-inflammatory activity, vs the case of sartans. The remarkable preventive activity of SLGT-2 inhibitors in heart failure is not associated with a clear anti-inflammatory mechanism. Finally, icosapent ethyl has been shown to reduce the CV risk in hypertriglyceridemia, with a 27 % reduction of hsCRP. The inflammation-based approach to arterial disease has considerably gained from an improved understanding of the clinical diagnostic strategy and from a better knowledge on the mode of action of numerous agents, including nutraceuticals.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Cardiovascular Agents/therapeutic use , Cardiovascular Diseases/prevention & control , Cardiovascular System/drug effects , Inflammation Mediators/antagonists & inhibitors , Inflammation/drug therapy , Animals , Antihypertensive Agents/therapeutic use , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Cardiovascular System/metabolism , Cardiovascular System/physiopathology , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Diabetes Mellitus/physiopathology , Dietary Supplements , Dyslipidemias/drug therapy , Dyslipidemias/metabolism , Dyslipidemias/physiopathology , Gastrointestinal Microbiome , Heart Disease Risk Factors , Humans , Hypertension/drug therapy , Hypertension/metabolism , Hypertension/physiopathology , Hypoglycemic Agents/therapeutic use , Hypolipidemic Agents/therapeutic use , Inflammation/etiology , Inflammation/metabolism , Inflammation/physiopathology , Inflammation Mediators/metabolism , Risk Assessment , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL